已知抛物线的顶点为坐标原点,焦点在轴的正半轴上,过点的直线与抛物线相交于,两点,且满足
(1)求抛物线的方程;
(2)若是抛物线上的动点,点在轴上,圆内切于,求面积的最小值.
已知函数.
(1)若是函数的极值点,求的值及函数的极值;
(2)讨论函数的单调性.
如图,多面体中,,平面⊥平面,四边形为矩形,∥,点在线段上,且.
(1)求证:⊥平面;
(2)若,求多面体被平面分成的大、小两部分的体积比.
已知等差数列的首项为6,公差为,且成等比数列.
(1)求的通项公式;
(2)若,求的值.
为庆祝新中国成立70周年,某市工会组织部分事业单位职工举行“迎国庆,广播操比赛”活动.现有200名职工参与了此项活动,将这200人按照年龄(单位:岁)分组:第一组[15,25),第二组[25,35),第三组[35,45),第四组[45,55),第五组[55,65],得到的频率分布直方图如图所示.记事件A为“从这200人中随机抽取一人,其年龄不低于35岁”,已知P(A)=0.75.
(1)求的值;
(2)在第二组、第四组中用分层抽样的方法抽取6人,再从这6人中随机抽取2人作为活动的负责人,求这2人恰好都在第四组中的概率.
已知直线与曲线切于点,且直线与曲线交于点 ,若,则的值为________.