如图:双曲线:的左、右焦点分别为,,过作直线交轴于点.
(1)当直线平行于的一条渐近线时,求点到直线的距离;
(2)当直线的斜率为时,在的右支上是否存在点,满足?若存在,求出点的坐标;若不存在,说明理由;
(3)若直线与交于不同两点、,且上存在一点,满足(其中为坐标原点),求直线的方程.
某创业团队拟生产两种产品,根据市场预测,产品的利润与投资额成正比(如图1),产品的利润与投资额的算术平方根成正比(如图2).(注: 利润与投资额的单位均为万元)
(注:利润与投资额的单位均为万元)
(1)分別将两种产品的利润、表示为投资额的函数;
(2)该团队已筹集到10 万元资金,并打算全部投入两种产品的生产,问:当产品的投资额为多少万元时,生产两种产品能获得最大利润,最大利润为多少?
已知函数.
(1)当时,求的值域;
(2)已知的内角A,B,C的对边分别为a,b,c,若,,,求的面积.
如图,已知平面,,,,是的中点.
(1)求与平面所成角的大小(结果用反三角函数值表示);
(2)求绕直线旋转一周所构成的旋转体的体积(结果保留).
如图,两个椭圆,内部重叠区域的边界记为曲线,是曲线上任意一点,给出下列三个判断:
①到、、、四点的距离之和为定值;
②曲线关于直线、均对称;
③曲线所围区域面积必小于.
上述判断中正确命题的个数为( )
A.0个 B.1个 C.2个 D.3个
已知函数为上的单调函数,是它的反函数,点和点均在函数的图像上,则不等式的解集为( )
A. B. C. D.