满分5 > 高中数学试题 >

在平面直角坐标系中,以坐标原点为中心,以坐标轴为对称轴的帮圆C经过点M(2,1)...

在平面直角坐标系中,以坐标原点为中心,以坐标轴为对称轴的帮圆C经过点M(2,1),N.

(1)求椭圆C的标准方程;

(2)经过点M作倾斜角互补的两条直线,分别与椭圆C相交于异于M点的AB两点,当△AMB面积取得最大值时,求直线AB的方程.

 

(1) (2)或 【解析】 (1)设椭圆C的方程为(,,). 根据椭圆过两点,代入得到方程组,解得. (2)由直线AM,BM,AB的斜率存在,故.设它们的斜率分别为,,k. 设,,直线AB的方程为.联立直线与椭圆方程,消元列出韦达定理,由.即. 即可解得,或.分别代入检验,再用弦长公式及点到直线的距离公式,表示出三角形的面积,利用基本不等式求最值. 【解析】 (1)设椭圆C的方程为(,,). ∵点和N在椭圆C上, ∴.解得. ∴椭圆C的标准方程为. (2)∵点A,B为椭圆上异于M的两点,且直线AM,BM的倾斜角互补, ∴直线AM,BM,AB的斜率存在.设它们的斜率分别为,,k. 设,,直线AB的方程为. ∴. ∴. 由,消去y,得. 由,得. ∴,. ∴. ∴. ∴. ∴,或. ∵点A,B为椭圆上异于M的两点, ∴当时,直线AB的方程为,不合题意,舍去. ∴直线AB的斜率为. ∵,点M到直线AB的距离为, ∴的面积为. 当且仅当时,的面积取得最大值,此时. ∵,满足. ∴直线AB的方程为或.
复制答案
考点分析:
相关试题推荐

已知动圆M与直线相切,且与圆外切,记动圆M的圆心轨迹为曲线C.

(1)求曲线C的方程;

(2)若直线l与曲线C相交于AB两点,且O为坐标原点),证明直线l经过定点H,并求出H点的坐标.

 

查看答案

某学校高一数学兴趣小组对学生每周平均体育锻炼小时数与体育成绩优秀(体育成绩满分100分,不低于85分称优秀)人数之间的关系进行分析研究,他们从本校初二,初三,高一,高二,高三年级各随机抽取了40名学生,记录并整理了这些学生周平均体育锻炼小时数与体育成绩优秀人数,得到如下数据表:

 

初二

初三

高一

高二

高三

周平均体育锻炼小时数工(单位:小时)

14

11

13

12

9

体育成绩优秀人数y(单位:人)

35

26

32

26

19

 

 

该兴趣小组确定的研究方案是:先从这5组数据中选取3组数据求线性回归方程,再用剩下的2组数据进行检验.

1)若选取的是初三,高一,高二的3组数据,请根据这3组数据,求出y关于x的线性回归方程

2)若由线性回归方程得到的估计数据与所选取的检验数据的误差均不超过1,则认为得到的线性回归方程是可靠的,试问(1)中所得到的线性回归方程是否可靠?

参考数据:.

参考公式:.

 

查看答案

已知椭圆Ca>b>0)的左,右焦点分别为,经过点的直线(不与x轴重合)与椭圆C相交于AB两点,的周长为8.

(1)求椭圆C的方程;

(2)经过椭圆C上的一点Q作斜率为)的两条直线分别与椭圆C相交于异于Q点的MN两点。若MN关于坐标原点对称,求的值.

 

查看答案

已知动点P到点M-30)的距离是点P到坐标原点O的距离的2倍,记动点P的轨迹为曲线C.

(1)求曲线C的方程;

(2)若直线与曲线C相交于AB两点,求的值.

 

查看答案

一个不透明的箱子中装有大小形状相同的5个小球,其中2个白球标号分别为3个红球标号分别为,现从箱子中随机地一次取出两个球.

(1)求取出的两个球都是白球的概率;

(2)求取出的两个球至少有一个是白球的概率.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.