随着互联网经济不断发展,网上开店销售农产品的人群越来越多,网上交易额也逐年增加,某一农户农产品连续五年的网银交易额统计表,如下所示:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 |
网上交易额(万元) | 5 | 6 | 7 | 8 | 10 |
经研究发现,年份与网银交易额之间呈线性相关关系,为了计算的方便,农户将上表的数据进行了处理,,得到如表:
时间代号 | 1 | 2 | 3 | 4 | 5 |
0 | 1 | 2 | 3 | 5 |
(1)求关于的线性回归方程;
(2)通过(1)中的方程.求出关于的回归方程;并用所求回归方程预测到2020年年底,该农户网店网银交易额可达多少?
(附:在线性回归方程中,,)
如图1,在中,,两点分别在上,且使,. 现将沿折起,使平面平面,得到四棱锥 (如图2)
(1)证明:平面;
(2)求二面角的余弦值.
某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需要看不同类型的书籍,为了合理配备资源,现对小区看书人员进行年龄调查,随机抽取了一天40名读书者进行调查. 将他们的年龄分成6段:
,
后得到如图所示的频率分布直方图,问:
(1)在40名读书者中年龄分布在的人数;
(2)估计40名读书者年龄的平均数和中位数.
设关于的一元二次方程,其中是某范围内的随机数,分别在下列条件下,求上述方程有实根的概率.
(1)若随机数;
(2)若是从区间中任取的一个数,是从区间中任取的一个数.
已知命题对任意,不等式恒成立,命题方程表示焦点在轴上的双曲线,则
(1)若为真命题,求实数的取值范围;
(2)若“或”为真,“且”为假,求实数的取值范围.
如图,平面平面,四边形是正方形,四边形是矩形,,是的中点,则与平面所成角的正弦值为___________.