满分5 > 高中数学试题 >

(1)已知函数f(x)(2x),若f(),θ∈(0,),求tanθ. (2)若函...

1)已知函数fx2x),若fθ∈(0),求tanθ

2)若函数gx)=﹣(sincoscos,讨论函数gx)在区间[上的单调性.

 

(1)(2)函数在单调递减,在单调递增 【解析】 (1)利用题中所给的条件,将代入函数解析式,化简得到,从而求得cosθ,利用同角三角函数关系式,结合角的范围,得到sinθ,之后应用同角三角函数关系式中的商关系,求得结果; (2)利用三角恒等变换化简函数解析式,得到,利用正弦型函数的单调性以及题中所给的区间,从而求得函数的单调区间,得到结果. (1)∵f()(θ), ∴cosθ, ∵θ∈(0,), ∴sinθ,tanθ, (2)∵g(x)=﹣(sincos)cos, , , , sin(x),x∈[,, 令可得,此时函数单调递减, 令可得,,此时函数单调递增, 所以函数在上单调递减,在上单调递增.
复制答案
考点分析:
相关试题推荐

绿水青山就是金山银山,随着我国经济的快速发展,国家加大了对环境污染的治理力度,某环保部门对其辖区内的一工厂的废气排放进行了监察,发现该厂产生的废气经过过滤排放后,过滤过程中废气的污染物数量千克/升与时间小时间的关系为,如果在前5个小时消除了10%的污染物,

110小时后还剩百分之几的污染物

2)污染物减少50%需要花多少时间(精确到1小时)参考数据:

 

查看答案

1)求sin65°cos(﹣35°)﹣sin25°sin145°的值;

2)已知tanαtanβ,求tanα+2β)的值.

 

查看答案

已知函数fx)的定义域为R,当x0时满足:①fx)﹣2f(﹣x)=0;②对任意x10x20x1x2有(x1x2)(fx1)﹣fx2))>0恒成立:③f4)=2f2)=2,则不等式x[fx)﹣1]0的解集为_____(用区间表示)

 

查看答案

函数ysin2x+φcos2x+φ)(0φπ)的图象关于直线x对称,则φ_____

 

查看答案

sinα,则cos2αcos2α_____

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.