已知集合,则( )
A. B. C. D.
在平面直角坐标系xOy中,已知椭圆E:(a>b>0)的离心率为,且椭圆E的短轴的端点到焦点的距离等于2.
(1)求椭圆E的标准方程;
(2)己知A,B分别为椭圆E的左、右顶点,过x轴上一点P(异于原点)作斜率为k(k≠0)的直线l与椭圆E相交于C,D两点,且直线AC与BD相交于点Q.①若k=1,求线段CD中点横坐标的取值范围;②判断是否为定值,并说明理由.
设等差数列的公差d大于0,前n项的和为.已知=18,,,成等比数列.
(1)求的通项公式;
(2)若对任意的,都有k(+18)≥恒成立,求实数k的取值范围;
(3)设().若s,t,s>t>1,且,求s,t的值.
如图,在四棱锥P—ABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,N为AD的中点.
(1)求异面直线PB与CD所成角的余弦值;
(2)点M在线段PC上且满足,直线MN与平面PBC所成角的正弦值为,求实数的值.
如图,在平面直角坐标系xOy中,已知抛物线的焦点F在y轴上,其准线与双曲线的下准线重合.
(1)求抛物线的标准方程;
(2)设A(,)(>0)是抛物线上一点,且AF=,B是抛物线的准线与y轴的交点.过点A作抛物线的切线l,过点B作l的平行线l′,直线l′与抛物线交于点M,N,求△AMN的面积.
已知数列满足:,前n项和,.
(1)求实数p的值及数列的通项公式;
(2)在等比数列中,,.若的前n项和为,求证:数列为等比数列.