满分5 > 高中数学试题 >

在平面直角坐标系中,,设的内切圆分别与边相切于点,已知,记动点的轨迹为曲线. (...

在平面直角坐标系中,,设的内切圆分别与边相切于点,已知,记动点的轨迹为曲线.

(1)求曲线的方程;

(2)的直线与轴正半轴交于点,与曲线E交于点轴,过的另一直线与曲线交于两点,若,求直线的方程.

 

(1)(2)或. 【解析】 (1)由内切圆的性质可知,,,转化,利用椭圆定义求椭圆方程; (2)先求点的坐标,判断,再由,求得,所以,求得,再分斜率存在和斜率不存在两种情况,当斜率存在时,设直线与椭圆方程联立,得到根与系数的关系,并且根据求斜率. 解:(1)由内切圆的性质可知,,, . 所以曲线是以为焦点,长轴长为的椭圆(除去与轴的交点). 设曲线则, 即 所以曲线的方程为. (2)因为轴,所以,设, 所以,所以,则 因为,所以, 所以 所以,所以 设则 ,所以 ①直线斜率不存在时, 方程为 此时,不符合条件舍去. ②直线的斜率存在时,设直线的方程为. 联立,得 所以, 将代入得 ,所以. 所以, 所以直线的方程为或.
复制答案
考点分析:
相关试题推荐

读书可以使人保持思想活力,让人得到智慧启发,让人滋养浩然正气书籍是文化的重要载体,读书是承继文化的重要方式某地区为了解学生课余时间的读书情况,随机抽取了名学生进行调查,根据调查得到的学生日均课余读书时间绘制成如图所示的频率分布直方图,将日均课余读书时间不低于分钟的学生称为读书之星,日均课余读书时间低于分钟的学生称为非读书之星”:已知抽取的样本中日均课余读书时间低于分钟的有

(1)的值;

(2)根据已知条件完成下面的列联表,并判断是否有以上的把握认为读书之星与性别有关?

 

非读书之星

读书之星

总计

 

 

 

 

总计

 

 

 

 

(3)将上述调查所得到的频率视为概率,现从该地区大量学生中,随机抽取名学生,每次抽取名,已知每个人是否被抽到互不影响,记被抽取的读书之星人数为随机变量,求的分布列和期望

附:,其中.

 

 

 

查看答案

在①;这两个条件中任选-一个,补充在下面问题中,然后解答补充完整的题.

中,角的对边分别为,已知        .

(1);

(2)如图,为边上一点,,求的面积

 

查看答案

在底面为正方形的四棱锥中,平面平面分别为棱的中点.

(1)求证:平面;

(2)若直线所成角的正切值为,求平面与平面所成锐二面角的大小.

 

查看答案

已知各项均不相等的等差数列的前项和为,且是等比数列的前.

(1);

(2),求的前项和.

 

查看答案

正方体的棱长为,点在棱上运动,过三点作正方体的截面,若为棱的中点,则截面面积为_________,若截面把正方体分成体积之比为的两部分,则_______

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.