设计一个平面图形,使它能够围成一个所有面都是等边三角形的正三棱锥.
如图所示是一个正三棱台,而且下底面边长为2,上底面边长和侧棱长都为1.O与分别是下底面与上底面的中心.
(1)求棱台的斜高;
(2)求棱台的高.
如图是底面边长为1且侧棱长为的正六棱锥.
(1)写出直线PA与直线CD,直线PA与面ABCDEF之间的关系;
(2)求棱锥的高与斜高;
(3)求棱锥的侧面积.
已知函数.
(1)讨论函数的单调性;
(2)当时,若曲线与曲线存在唯一的公切线,求实数的值;
(3)当时,不等式恒成立,求实数的取值范围.
在平面直角坐标系中,,设的内切圆分别与边相切于点,已知,记动点的轨迹为曲线.
(1)求曲线的方程;
(2)过的直线与轴正半轴交于点,与曲线E交于点轴,过的另一直线与曲线交于两点,若,求直线的方程.
读书可以使人保持思想活力,让人得到智慧启发,让人滋养浩然正气书籍是文化的重要载体,读书是承继文化的重要方式某地区为了解学生课余时间的读书情况,随机抽取了名学生进行调查,根据调查得到的学生日均课余读书时间绘制成如图所示的频率分布直方图,将日均课余读书时间不低于分钟的学生称为“读书之星”,日均课余读书时间低于分钟的学生称为“非读书之星”:已知抽取的样本中日均课余读书时间低于分钟的有人
(1)求的值;
(2)根据已知条件完成下面的列联表,并判断是否有以上的把握认为“读书之星”与性别有关?
| 非读书之星 | 读书之星 | 总计 |
男 |
|
|
|
女 |
| ||
总计 |
|
|
|
(3)将上述调查所得到的频率视为概率,现从该地区大量学生中,随机抽取名学生,每次抽取名,已知每个人是否被抽到互不影响,记被抽取的“读书之星”人数为随机变量,求的分布列和期望
附:,其中.