满分5 > 高中数学试题 >

如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠B...

如图,直四棱柱ABCDA1B1C1D1的底面是菱形,AA1=4AB=2,∠BAD=60°,EMN分别是BCBB1A1D的中点.

1)证明:MN∥平面C1DE

2)求点C到平面C1DE的距离.

 

(1)见解析; (2). 【解析】 (1)利用三角形中位线和可证得,证得四边形为平行四边形,进而证得,根据线面平行判定定理可证得结论; (2)根据题意求得三棱锥的体积,再求出的面积,利用求得点C到平面的距离,得到结果. (1)连接, ,分别为,中点 为的中位线 且 又为中点,且 且 四边形为平行四边形 ,又平面,平面 平面 (2)在菱形中,为中点,所以, 根据题意有,, 因为棱柱为直棱柱,所以有平面, 所以,所以, 设点C到平面的距离为, 根据题意有,则有, 解得, 所以点C到平面的距离为.
复制答案
考点分析:
相关试题推荐

长方体的长,宽,高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为__________.

 

查看答案

(2017新课标全国Ⅲ理科)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为

A. B.

C. D.

 

查看答案

体积为的正方体的顶点都在同一球面上,则该球面的表面积为

A.  B.  C.  D.

 

查看答案

是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为

A. B. C. D.

 

查看答案

已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,EF分别是PAAB的中点,∠CEF=90°,则球O的体积为

A. B. C. D.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.