在以为圆心,6为半径的圆内有一点,点为圆上的任意一点,线段的垂直平分线和半径交于点.
(1)判断点的轨迹是什么曲线,并求其方程;
(2)记点的轨迹为曲线,过点的直线与曲线交于,两点,求的最大值;
(3)在圆上的任取一点,作曲线的两条切线,切点分别为、,试判断与是否垂直,并给出证明过程.
如图(1),在直角梯形中,为的中点,四边形为正方形,将沿折起,使点到达点,如图(2),为的中点,且,点为线段上的一点.
(1)证明:;
(2)当与夹角最小时,求平面与平面所成锐二面角的余弦值.
已知顶点在原点,焦点在轴上的抛物线过点.
(1)求抛物线的标准方程;
(2)斜率为的直线与抛物线交于、两点,点是线段的中点,求直线的方程,并求线段的长.
某山村为响应习近平总书记提出的“绿水青山就是金山银山”的号召,积极进行生态文明建设,投资64万元新建一处农业生态园.建成投入运营后,第一年需支出各项费用11万元,以后每年支出费用增加2万元.从第一年起,每年收入都为36万元.设表示前年的纯利润总和(前年的总收入-前年的总支出费用-投资额)
(1)求的表达式,计算前多少年的纯利润总和最大,并求出最大值;
(2)计算前多少年的年平均纯利润最大,并求出最大值.
已知等差数列,,前项和为,各项为正数的等比数列满足:,,.
(1)求数列和的通项公式;
(2)在空间直角坐标系中,为坐标原点,存在一系列的点,,若,求数列的前项和.
已知,解关于的不等式.