若函数满足下列条件:
在定义域内存在使得成立,则称函数具有性质;反之若不存在,则称函数不具有性质.
(1)证明函数具有性质,并求出对应的的值;
(2)已知函数,具有性质,求实数的取值范围.
某自然资源探险组织试图穿越某峡谷,但峡谷内被某致命昆虫所侵扰,为了穿越这个峡谷,该探险组织进行了详细的调研,若每平方米的昆虫数量记为昆虫密度,调研发现,在这个峡谷中,昆虫密度是时间(单位:小时)的一个连续不间断的函数其函数表达式为
,
其中时间是午夜零点后的小时数,为常数.
(1)求的值;
(2)求出昆虫密度的最小值和出现最小值的时间;
(3)若昆虫密度不超过1250只/平方米,则昆虫的侵扰是非致命性的,那么在一天24小时内哪些时间段,峡谷内昆虫出现非致命性的侵扰.
已知函数f(x)=a﹣(a∈R)
(Ⅰ)判断函数f(x)在R上的单调性,并用单调函数的定义证明;
(Ⅱ)是否存在实数a使函数f(x)为奇函数?若存在,求出a的值;若不存在,请说明理由.
为了预防某流感病毒,某学校对教室进行药熏消毒,室内每立方米空气中的含药量(单位:毫克)随时间(单位:)的变化情况如下图所示,在药物释放的过程中,与成正比:药物释放完毕后,与的函数关系式为(为常数),根据图中提供的信息,回答下列问题:
(1)写出从药物释放开始,与之间的函数关系式.
(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室学习,那么从药物释放开始,至少需要经过多少小时后,学生才能回到教空?
请在①充分不必要条件,②必要不充分条件,③充要条件这三个条件中任选一个,补充在下面问题(2)中,若问题(2)中的实数存在,求出的取值范围;若不存在,说明理由.
已知集合.
(1)求集合;
(2)若是成立的______条件,判断实数是否存在?
注:如果选择多个条件分别解答,按第一个解答计分.
在平面直角坐标系中,锐角的顶点在坐标原点,始边与轴非负半轴重合,终边与单位圆交于点,且点的纵坐标为.
(1)求和;
(2)求的值.