命题“任意,都有>0”的否定为( )
A.对任意,都有≤0
B.不存在,都有≤0
C.存在,使得>0
D.存在,使得≤0
绝对值|x﹣1|的几何意义是数轴上的点x与点1之间的距离,那么对于实数a,b,的几何意义即为点x与点a、点b的距离之和.
(1)直接写出与的最小值,并写出取到最小值时x满足的条件;
(2)设a1≤a2≤…≤an是给定的n个实数,记S=.试猜想:若n为奇数,则当x∈ 时S取到最小值;若n为偶数,则当x∈ 时,S取到最小值;(直接写出结果即可)
(3)求的最小值.
称正整数集合 A={a1,a2,…,an}(1≤a1<a2<…<an,n≥2)具有性质 P:如果对任意的i,j(1≤i≤j≤n),与两数中至少有一个属于A.
(1)分别判断集合{1,3,6}与{1,3,4,12}是否具有性质 P;
(2)设正整数集合 A={a1,a2,…,an}(1≤a1<a2<…<an,n≥2)具有性质 P.证明:对任意1≤i≤n(i∈N*),ai都是an的因数;
(3)求an=30时n的最大值.
(1)解关于x的不等式:;
(2)记(1)中不等式的解集为 A,若 A⊆R+,证明:2a3+4a≥5a2+1.
某自来水厂拟建一座平面图为矩形且面积为200m2的二级净水处理池(如图).池的深度一定,池的外围周壁建造单价为400元/m,中间的一条隔壁建造单价为100元/m,池底建造单价为60元/m2,池壁厚度忽略不计.问净水池的长为多少时,可使总造价最低?
已知全集U={1,2,3,…,10},A={1,2,3,4,5},B={4,5,6,7,8},C={3,5,7,9},求A∪B,A∩B,(UA)∩B,A∪( B∩C).