已知向量,,若与垂直,则实数的值为______.
有一大批产品,其验收方案如下,先做第一次检验:从中任取8件,经检验都为优质品时接受这批产品,若优质品数小于6件则拒收;否则做第二次检验,其做法是从产品中再另任取3件,逐一检验,若检测过程中检测出非优质品就要终止检验且拒收这批产品,否则继续产品检测,且仅当这3件产品都为优质品时接受这批产品.若产品的优质品率为0.9.且各件产品是否为优质品相互独立.
(1)记为第一次检验的8件产品中优质品的件数,求的期望与方差;
(2)求这批产品被接受的概率;
(3)若第一次检测费用固定为1000元,第二次检测费用为每件产品100元,记为整个产品检验过程中的总费用,求的分布列.
(附:,,,,)
一只昆虫的产卵数与温度有关,现收集了6组观测数据与下表中.由散点图可以发现样本点分布在某一指数函数曲线的周围.
温度 | 21 | 23 | 25 | 27 | 29 | 31 |
产卵数/个 | 7 | 11 | 21 | 24 | 66 | 114 |
令,经计算有:
26 | 40.5 | 19.50 | 6928 | 526.60 | 70 |
(1)试建立关于的回归直线方程并写出关于的回归方程.
(2)若通过人工培育且培育成本与温度和产卵数的关系为(单位:万元),则当温度为多少时,培育成本最小?
注:对于一组具有线性相关关系的数据,,…,,其回归直线的斜率和截距的最小二乘公式分别为,.
已知四棱锥,底面为菱形,,平面,,点在线段上且,点是的中点.
(1)证明:平面;
(2)求二面角的余弦值.
根据统计调查数据显示:某企业某种产品的质量指标值服从正态分布,从该企业生产的这种产品(数量很大)中抽取100件,测量这100件产品的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间,,内的频率之比为.
(1)求这100件产品质量指标值落在区间内的频率;
(2)根据频率分布直方图求平均数(同一组中的数据用该组区间的中点值作代表);
(3)若取这100件产品指标的平均值,从这种产品(数量很大)中任取3个,求至少有1个落在区间的概率.
参考数据:,若,则;;.
已知一堆产品中有一等品2件,二等品3件,三等品4件,现从中任取3件产品.
(1)求一、二、三等品各取到一个的概率;
(2)记表示取到一等品的件数,求的分布列和数学期望.