在长方体中,已知,求二面角的大小.
在长方体的面所在的平面中,分别写出与下列直线垂直的平面.
(1);
(2);
(3).
已知对任意的实数,都有:,且当时,有.
(1)求;
(2)求证:在上为增函数;
(3)若,且关于的不等式对任意的恒成立,求实数的取值范围.
已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在区间[2a,a+1]上不单调,求实数a的取值范围;
(3)在区间[﹣1,1]上,y=f(x)的图象恒在y=2x+2m+1的图象上方,试确定实数m的取值范围.
函数是定义在上的奇函数.
⑴确定函数的解析式;
⑵用定义证明的单调性;
⑶解不等式
某省两相近重要城市之间人员交流频繁,为了缓解交通压力,特修一条专用铁路,用一列火车作为交通车,已知该车每次拖4节车厢,一日能来回16次, 如果每次拖7节车厢,则每日能来回10次.
(1)若每日来回的次数是车头每次拖挂车厢节数的一次函数,求此一次函数解析式;
(2)在(1)的条件下,每节车厢能载乘客110人.问这列火车每天来回多少次才能使运营人数最多?并求出每天最多运营人数.