已知复数z满足(i是虚数单位),则z=________.
已知椭圆的左焦点为F,短轴的两个端点分别为A、B,且,为等边三角形.
(1)求椭圆C的方程;
(2)如图,点M在椭圆C上且位于第一象限内,它关于坐标原点O的对称点为N;过点M作x轴的垂线,垂足为H,直线与椭圆C交于另一点J,若,试求以线段为直径的圆的方程;
(3)已知是过点A的两条互相垂直的直线,直线与圆相交于两点,直线与椭圆C交于另一点R;求面积取最大值时,直线的方程.
已知数列的前项和为,且,().
(1)计算,,,,并求数列的通项公式;
(2)若数列满足,求证:数列是等比数列;
(3)由数列的项组成一个新数列:,,,,,设为数列的前项和,试求的值.
对于函数定义已知偶函数的定义域为当且时,
(1)求并求出函数的解析式;
(2)若存在实数使得函数在上的值域为,求实数的取值范围.
已知的面积为S,且
(1)求的值;
(2)若求的面积S .
如图,在正三棱柱中,已知它的底面边长为,高为.
(1)求正三棱柱的表面积与体积;
(2)若分别是的中点,求异面直线与所成角的大小(结果用反三角函数表示).