在棱长为1的正方体中,和分别为和的中点,那么直线与所成角的余弦值______________.
异面直线成角,直线,则直线所成角的范围是_____________
计算___________.
抛物线的准线方程为________.
设数列共有项,记该数列前项,,…,中的最大项为,该数列后项,,…,中的最小项为,(1,2,3,…,).
(1)若数列的通项公式为,求数列的通项公式;
(2)若数列是单调数列,且满足,,求数列的通项公式;
(3)试构造一个数列,满足,其中是公差不为零的等差数列,是等比数列,使得对于任意给定的正整数,数列都是单调递增的,并说明理由.
如图,在平面直角坐标系中,已知椭圆:的离心率,左顶点为,过点作斜率为的直线交椭圆于点,交轴于点.
(1)求椭圆的方程;
(2)已知为的中点,是否存在定点,对于任意的都有,若存在,求出点的坐标;若不存在说明理由;
(3)若过点作直线的平行线交椭圆于点,求的最小值.