已知全集,集合,.
(1)当时,求的取值范围;
(2)当时,求的取值范围.
某森林出现火灾,火势正以每分钟的速度顺风蔓延,消防站接到警报立即派消防队员前去,在火灾发生后分钟到达救火现场,已知消防队员在现场平均每人每分钟灭火,所消耗的灭火材料、劳务津贴等费用为每人每分钟125元,另附加每次救火所损耗的车辆、器械和装备等费用平均每人100元,而烧毁一平方米森林损失费为60元.
(1)设派名消防队员前去救火,用分钟将火扑灭,试建立与的函数关系式;
(2)问应该派多少名消防队员前去救火,才能使总损失最少?
(总损失=灭火材料、劳务津贴等费用+车辆、器械和装备费用+森林损失费)
已知两个正数a,b满足a+b=1
(1)求证:;
(2)若不等式对任意正数a,b都成立,求实数x的取值范围.
设,,.
(1)若,求的值;
(2)若,求的值.
解不等式组:
德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数被称为狄利克雷函数,其中为实数集,为有理数集,则关于函数有如下四个命题:①;②函数是偶函数;③任取一个不为零的有理数,对任意的恒成立;④存在三个点,,,使得为等边三角形.其中真命题的个数有( )
A.1个 B.2个 C.3个 D.4个