在数列中,若是正整数,且,,则称为“D-数列”.
(1) 举出一个前五项均不为零的“D-数列”(只要求依次写出该数列的前五项);
(2) 若“D-数列”中,,,数列满足,,写出数列的通项公式,并分别判断当时,与的极限是否存在,如果存在,求出其极限值(若不存在不需要交代理由);
(3) 证明: 设“D-数列”中的最大项为,证明: 或.
如图,在平面直角坐标系中,过轴正方向上一点任作一直线,与抛物线相交于两点,一条垂直于轴的直线分别与线段和直线交于点.
(1) 若,求的值;
(2) 若,为线段的中点,求证: 直线与该抛物线有且仅有一个公共点.
(3) 若,直线的斜率存在,且与该抛物线有且仅有一个公共点,试问是否一定为线段的中点? 说明理由.
已知.是不小于的固定正整数.
(1) 解不等式;
(2) 试证明: 函数在内有一个零点,且在内仅有一个零点.
某加油站拟建造如图所示的铁皮储油罐(不计厚度,长度单位为米),其中储油罐的中间为圆柱形,左右两端均为半球形,(为圆柱的高,为球的半径,).假设该储油罐的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为千元,半球形部分每平方米建造费用为千元.设该储油罐的建造费用为千元.
(1) 写出关于的函数表达式,并求该函数的定义域;
(2) 若预算为万元,求所能建造的储油罐中的最大值(精确到),并求此时储油罐的体积(单位: 立方米,精确到立方米).
已知复数(是虚数单位)在复平面上对应的点依次为,点是坐标原点.
(1)若,求的值;
(2)若点的横坐标为,求.
正四面体中,的中点依次记为.直线与的关系是_____.
A.相交且垂直 B.异面且垂直 C.相交且不垂直 D.异面且不垂直