比较和的大小.
已知数列的前项和为,数列是首项为0,公差为的等差数列.
(1)求数列的通项公式;
(2)设,对任意的正整数,将集合中的三个元素排成一个递增的等差数列,其公差为,求证:数列为等比数列;
(3)对(2)中的,求集合的元素个数.
(1)若动点到定点的距离与到定直线:的距离之比为,求证:动点的轨迹是椭圆;
(2)设(1)中的椭圆短轴的上顶点为,试找出一个以点为直角顶点的等腰直角三角形,并使得、两点也在椭圆上,并求出的面积;
(3)对于椭圆(常数),设椭圆短轴的上顶点为,试问:以点为直角顶点,且、两点也在椭圆上的等腰直角三角形有几个?
已知函数,为实数.
(1)讨论在上的奇偶性;(只要写出结论,不需要证明)
(2)当时,求函数的单调区间;
(3)当时,求函数在上的最大值.
如图,直三棱柱中,,,,,M、N分别是和的中点.
(1)求异面直线与所成的角;
(2)求三棱锥的体积.
中,内角的对边分别为,已知成等比数列,且.
(1)求的值;
(2)设,求的值.