已知函数.
(Ⅰ)若=1时,求曲线在点处的切线方程;
(Ⅱ)设,若存在,对于任意使,求的取值范围.
己知各项均为正数的数列{}满足(N*),且是的等差中项.
(I)求数列{}的通项公式;
(II)若,求使成立的正整数n的最小值.
如图所示,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面底面ABCD,且,若E,F分别为PC,BD的中点.
(I)求证:EF//平面PAD;
(II)求三棱锥F-DEC的体积;
(III)在线段CD上是否存在一点G,使得平面平面PDC?若存在,请说明其位置,并加以证明;若不存在,请说明理由.
已知函数,直线与的图象交点之间的最短距离为.
(1)求的解析式及其图象的对称中心;
(2)设的内角的对边分别为,若,,求的面积.
某网站针对“2014年法定节假日调休安排”展开的问卷调查,提出了A、B、C三种放假方案,调查结果如下:
| 支持A方案 | 支持B方案 | 支持C方案 |
35岁以下 | 200 | 400 | 800 |
35岁以上(含35岁) | 100 | 100 | 400 |
(1)在所有参与调查的人中,用分层抽样的方法抽取n个人,已知从“支持A方案”的人中抽取了6人,求n的值;
(2)在“支持B方案”的人中,用分层抽样的方法抽取5人看作一个总体,从这5人中任意选取2人,求恰好有1人在35岁以上(含35岁)的概率.
定义一个对应法则.现有点与点,点是线段上一动点,按定义的对应法则.当点在线段AB上从点A开始运动到点B结束时,点M的对应点所经过的路线长度为_________