设命题,则为( )
A. B.
C. D.
已知集合,集合为整数集,则( )
A. B. C. D.
已知椭圆的离心率为,过焦点且垂直于长轴的直线被椭圆截得的弦长为,过点的直线与椭圆相交于两点
(1)求椭圆的方程;
(2)设为椭圆上一点,且满足(为坐标原点),当时,求实数的取值范围.
已知函数.
(Ⅰ)若=1时,求曲线在点处的切线方程;
(Ⅱ)设,若存在,对于任意使,求的取值范围.
己知各项均为正数的数列{}满足(N*),且是的等差中项.
(I)求数列{}的通项公式;
(II)若,求使成立的正整数n的最小值.
如图所示,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面底面ABCD,且,若E,F分别为PC,BD的中点.
(I)求证:EF//平面PAD;
(II)求三棱锥F-DEC的体积;
(III)在线段CD上是否存在一点G,使得平面平面PDC?若存在,请说明其位置,并加以证明;若不存在,请说明理由.