如图,在四棱锥中,底面是梯形,且,,点是线段的中点,过的平面交平面于,且,,且,,.
(1)求证:;
(2)求直线与平面所成角的余弦值.
已知椭圆:与双曲线:有相同左右焦点,,且椭圆上一点的坐标为.
(1)求椭圆的方程;
(2)若直线过且与椭圆交于,两点,若,求直线的斜率取值范围.
已知圆:,直线:.
(1)直线恒过点,求点的坐标;
(2)当为何值时,直线与圆相切;
(3)当直线与圆相交于,两点,且时,求直线的方程.
知数列是公差不为0的等差数列,首项,且成等比数列.
(1)求数列的通项公式;
(2)设数列满足,求数列的前项和.
“垛积术”(隙积术)是由北宋科学家沈括在《梦溪笔谈》中首创,南宋数学家杨辉、元代数学家朱世杰丰富和发展的一类数列求和方法,有茭草垛、方垛、刍童垛、三角垛等等.某仓库中部分货物堆放成如图所示的“茭草垛”:自上而下,第一层1件,以后每一层比上一层多1件,最后一层是件.已知第一层货物单价1万元,从第二层起,货物的单价是上一层单价的,第层的货物的价格为______,若这堆货物总价是万元,则的值为______.
在平面直角坐标系中,为双曲线右支上的一个动点.若点到直线的距离大于恒成立,则实数的最大值为______.