已知抛物线的焦点为,为坐标原点,是抛物线上异于的两点.
(1)求抛物线的方程;
(2)若直线的斜率之积为,求证:直线过定点.
已知四棱锥的底面为直角梯形,,°,底面,且,是的中点.
(1)证明:平面平面;
(2)求与所成角的余弦值;
(3)求平面与平面所成二面角(锐角)的余弦值.
已知圆外有一点,过点作直线.
(1)当直线与圆相切时,求直线的方程;
(2)当直线的倾斜角为时,求直线被圆所截得的弦长.
求分别满足下列条件的直线l的方程.
(1)已知点,l过点,P到l距离为1
(2)l过点且在x轴,y轴上截距的绝对值相等
已知双曲线的一条渐近线方程为,左焦点为,当点在双曲线右支上,点在圆上运动时,则的最小值为__________.
由直线上的任意一个点向圆引切线,则切线长的最小值为________.