如图,在四棱锥中,底面为平行四边形,平面,在棱上.
(I)当时,求证平面
(II)当二面角的大小为时,求直线与平面所成角的正弦值.
在四棱锥中,底面ABCD为直角梯形,,,侧面底面ABCD,,.
若PB的中点为E,求证:平面PCD;
若,求二面角的余弦值.
已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线相切.
(1)求圆的方程;
(2)若直线与圆相交于A,B两点,是否存在实数a,使得过点的直线l垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.
如图, 正三棱柱ABC-A1B1C1中,E是AC的中点.
(1)求证: 平面BEC1⊥平面ACC1A1;
(2)若AA1=, AB=2, 求三棱锥A-BEC1的体积.
已知直角的顶点坐标,直角顶点,顶点C在x轴上.
(1)求点C的坐标;
(2)求的斜边中线的方程.
已知圆C:和两点,若圆C上存在点M,使得,则m的最小值为______