设,则
A. B. C. D.
已知函数f(x)=|x﹣a|+|x+1|(a∈R),g(x)=|2x﹣1|+2.
(1)若a=1,证明:不等式f(x)≤g(x)对任意的x∈R成立;
(2)若对任意的m∈R,都有t∈R,使得f(m)=g(t)成立,求实数a的取值范围.
在平面直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,动点在直线上,将射线逆时针旋转得到射线,射线上一点,满足,点的轨迹为曲线,
(1)求曲线的极坐标方程;
(2)设射线和射线分别与曲线交于两点,求面积的最大值.
已知函数f(x)=lnx﹣ax,a∈R.
(1)若f(x)有两个零点,求a的取值范围;
(2)设函数g(x),证明:g(x)有极大值,且极大值小于.
已知为椭圆C:1(a>b>0)的一个焦点,且点在椭圆C上.
(1)求椭圆C的方程;
(2)若点P(m,0)为椭圆C的长轴上一动点,过P且斜率为的直线l交椭圆C于A,B两点,求证|PA|2+|PB|2为定值.
如图,在四棱锥P﹣ABCD中,侧面PAD⊥底面ABCD,∠PAD=90°,CD∥AB,∠BAD=90°,且AB=3CD=3PAAD=3.
(1)求证:BD⊥PC;
(2)求点A到平面PCD的距离.