在等差数列中,若=4,=2,则= ( )
A.-1 B.0 C.1 D.6
已知椭圆是长轴的一个端点,弦过椭圆的中心O,点C在第一象限,且,.
(1)求椭圆的标准方程;
(2)设P、Q为椭圆上不重合的两点且异于A、B,若的平分线总是垂直于x轴,问是否存在实数,使得?若不存在,请说明理由;若存在,求的最大值.
如图,在四面体中,平面,.,.M是的中点,P是的中点,点Q在线段上,且.
(1)证明:;
(2)若二面角的大小为60°,求的大小.
已知平面上动点P到定点的距离比P到直线的距离大1.记动点P的轨迹为曲线C.
(1)求曲线C的方程;
(2)过点的直线交曲线C于A、B两点,点A关于x轴的对称点是D,证明:直线恒过点F.
如图,正方形ADEF与梯形ABCD所在的平面互相垂直,,,,,为的中点.
(1)求证:BM∥平面ADEF;
(2)求证:平面BDE⊥平面BEC.
已知线段的端点B的坐标是,端点A在圆上运动,M是线段的中点.
(1)求动点M的轨迹方程.
(2)已知点,求的最大值和最小值.