选修4-5不等式选讲
设均为正数,且,证明:
(Ⅰ)若,则;
(Ⅱ)是的充要条件.
如图,已知点为抛物线的焦点,过点的直线交抛物线于、两点,点在抛物线上,使得的重心在轴上,直线交轴于点,且在点的右侧.记、的面积分别、.
(1)求的值及抛物线的方程;
(2)求的最小值及此时点的坐标.
如图,直三棱柱中,,,分别为、的中点.
(1)证明:平面;
(2)已知与平面所成的角为,求二面角的余弦值.
已知椭圆的左、右焦点分别为短轴两个端点为且四边形是边长为的正方形.
(Ⅰ)求椭圆的方程;
(Ⅱ)若分别是椭圆长轴的左、右端点,动点满足,连接,交椭圆于点.证明:为定值.
已知直线l的方程为.
(1)求过点且与直线l垂直的直线方程;
(2)求直线与的交点,且求这个点到直线l的距离.
如图,矩形中,平面,,为上的点,且平面,.
(Ⅰ)求证:平面;
(Ⅱ)求三棱锥的体积.