满分5 > 高中数学试题 >

设椭圆的左焦点为,上顶点为.已知椭圆的短轴长为4,离心率为. (Ⅰ)求椭圆的方程...

设椭圆的左焦点为,上顶点为.已知椭圆的短轴长为4,离心率为.

(Ⅰ)求椭圆的方程;

(Ⅱ)设点在椭圆上,且异于椭圆的上、下顶点,点为直线轴的交点,点轴的负半轴上.若为原点),且,求直线的斜率.

 

(Ⅰ)(Ⅱ)或. 【解析】 (Ⅰ)由题意得到关于a,b,c的方程,解方程可得椭圆方程; (Ⅱ)联立直线方程与椭圆方程确定点P的坐标,从而可得OP的斜率,然后利用斜率公式可得MN的斜率表达式,最后利用直线垂直的充分必要条件得到关于斜率的方程,解方程可得直线的斜率. (Ⅰ) 设椭圆的半焦距为,依题意,,又,可得,b=2,c=1. 所以,椭圆方程为. (Ⅱ)由题意,设.设直线的斜率为, 又,则直线的方程为,与椭圆方程联立, 整理得,可得, 代入得, 进而直线的斜率, 在中,令,得. 由题意得,所以直线的斜率为. 由,得, 化简得,从而. 所以,直线的斜率为或.
复制答案
考点分析:
相关试题推荐

如图,平面.

(Ⅰ)求证:平面

(Ⅱ)求直线与平面所成角的正弦值;

(Ⅲ)若二面角的余弦值为,求线段的长.

 

查看答案

设甲、乙两位同学上学期间,每天7:30之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.

(Ⅰ)用表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量的分布列和数学期望;

(Ⅱ)设为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件发生的概率.

 

查看答案

中,内角所对的边分别为.已知.

(Ⅰ)求的值;

(Ⅱ)求的值.

 

查看答案

已知,函数在区间[1,4]上的最大值是5,则a的取值范围是__________

 

查看答案

已知函数若关于的方程恰有2个互异的实数解,则的取值范围是______________.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.