满分5 > 高中数学试题 >

设函数为的导函数. (Ⅰ)求的单调区间; (Ⅱ)当时,证明; (Ⅲ)设为函数在区...

设函数的导函数.

(Ⅰ)求的单调区间;

(Ⅱ)当时,证明

(Ⅲ)设为函数在区间内的零点,其中,证明.

 

(Ⅰ)单调递增区间为的单调递减区间为.(Ⅱ)见证明;(Ⅲ)见证明 【解析】 (Ⅰ)由题意求得导函数的解析式,然后由导函数的符号即可确定函数的单调区间; (Ⅱ)构造函数,结合(Ⅰ)的结果和导函数的符号求解函数的最小值即可证得题中的结论; (Ⅲ)令,结合(Ⅰ),(Ⅱ)的结论、函数的单调性和零点的性质放缩不等式即可证得题中的结果. (Ⅰ)由已知,有. 当时,有,得,则单调递减; 当时,有,得,则单调递增. 所以,的单调递增区间为, 的单调递减区间为. (Ⅱ)记.依题意及(Ⅰ)有:, 从而.当时,,故 . 因此,在区间上单调递减,进而. 所以,当时,. (Ⅲ)依题意,,即. 记,则. 且. 由及(Ⅰ)得. 由(Ⅱ)知,当时,,所以在上为减函数, 因此. 又由(Ⅱ)知,故: . 所以.
复制答案
考点分析:
相关试题推荐

是等差数列,是等比数列.已知.

(Ⅰ)求的通项公式;

(Ⅱ)设数列满足其中.

(i)求数列的通项公式;

(ii)求.

 

查看答案

设椭圆的左焦点为,上顶点为.已知椭圆的短轴长为4,离心率为.

(Ⅰ)求椭圆的方程;

(Ⅱ)设点在椭圆上,且异于椭圆的上、下顶点,点为直线轴的交点,点轴的负半轴上.若为原点),且,求直线的斜率.

 

查看答案

如图,平面.

(Ⅰ)求证:平面

(Ⅱ)求直线与平面所成角的正弦值;

(Ⅲ)若二面角的余弦值为,求线段的长.

 

查看答案

设甲、乙两位同学上学期间,每天7:30之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.

(Ⅰ)用表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量的分布列和数学期望;

(Ⅱ)设为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件发生的概率.

 

查看答案

中,内角所对的边分别为.已知.

(Ⅰ)求的值;

(Ⅱ)求的值.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.