设抛物线的焦点为,过且斜率为的直线与交于,两点,.
(1)求的方程;
(2)求过点,且与的准线相切的圆的方程.
已知椭圆的离心率为,其左、右焦点分别为、,过且垂直于x轴的直线交椭圆C于点D,.
(1)求椭圆C的方程;
(2)过的直线l交椭圆C于A、B两点,若,求的面积.
已知双曲线的离心率为,点是双曲线的一个顶点.
(1)求双曲线的方程;
(2)经过的双曲线右焦点作倾斜角为直线l,直线l与双曲线交于不同的A,B两点求AB的长.
设直线l的方程为.
(1)若直线l与直线平行,求实数a的值;
(2)设直线l与圆相交于A、B两点,当弦长取得最小值时,求直线l的方程.
已知表示焦点在y轴上的椭圆;表示双曲线.
(1)试写出p的一个必要不充分条件;
(2)若为假命题,且为真命题,求实数m的取值范围.
已知抛物线,过点的直线和抛物线交于两点,且有,为抛物线上异于的一点,若的重心恰为抛物线焦点,则的值为________.