求方程的实数解的个数.
已知,函数F(x)=min{2|x−1|,x2−2ax+4a−2},
其中min{p,q}=
(Ⅰ)求使得等式F(x)=x2−2ax+4a−2成立的x的取值范围;
(Ⅱ)(ⅰ)求F(x)的最小值m(a);
(ⅱ)求F(x)在区间[0,6]上的最大值M(a).
设与是定义在同一区间上的两个函数,若函数在上有两个不同的零点,则称和在上是“关联函数”,区间称为“关联区间”.若与在[0,3]上是“关联函数”,则的取值范围是 .
已知函数,,,则的最值是( )
A.最大值为3,最小值为1
B.最大值为,无最小值
C.最大值为,无最小值
D.最大值为3,最小值为-1
据气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示,过线段OC上一点作横轴的垂线l,梯形OABC在直线l左侧部分的面积即为t(h)内沙尘暴所经过的路程s(km).
(1)当时,求s的值;
(2)将s随t变化的规律用数学关系式表示出来;
(3)若N城位于M地正南方向,且距M地650km,试判断这场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由.
由方程所确定的x,y的函数关系记为,给出如下结论:
①是R上的单调递增函数;
②的图象关于直线对称;
③对于任意恒成立.
其中正确的为___________(写出所有正确结论的序号).