设,其中i是虚数单位,则________.
已知集合,且,则实数k的值为________.
若数列满足则称为数列.记
(1)若为数列,且试写出的所有可能值;
(2)若为数列,且求的最大值;
(3)对任意给定的正整数是否存在数列使得?若存在,写出满足条件的一个数列;若不存在,请说明理由.
设椭圆,定义椭圆C的“相关圆”E为:.若抛物线的焦点与椭圆C的右焦点重合,且椭圆C的短轴长与焦距相等.
(1)求椭圆C及其“相关圆”E的方程;
(2)过“相关圆”E上任意一点P作其切线l,若l 与椭圆交于A,B两点,求证:为定值(为坐标原点);
(3)在(2)的条件下,求面积的取值范围.
如图,在直四棱柱中,底面为菱形,且侧棱 其中为的交点.
(1)求点到平面的距离;
(2)在线段上,是否存在一个点,使得直线与垂直?若存在,求出线段的长;若不存在,请说明理由.
已知函数在区间上的最大值为5,最小值为1.
(1)求、的值及的解析式;
(2)设,若不等式在上有解,求实数的取值范围.