已知双曲线的一条渐近线方程为,则该双曲线的离心率是( )
A. B. C. D.
设命题,,则为( )
A., B.,
C., D.,
已知向量,满足,则等于( )
A. B. C. D.
抛物线的焦点坐标为( )
A. B. C. D.
已知椭圆的两个焦点,与短轴的一个端点构成一个等边三角形,且直线与圆相切.
(1)求椭圆的方程;
(2)已知过椭圆的左顶点的两条直线,分别交椭圆于,两点,且,求证:直线过定点,并求出定点坐标;
(3)在(2)的条件下求面积的最大值.
如图,四棱锥中,底面为矩形,侧面为正三角形,,,平面平面,为棱上一点(不与、重合),平面交棱于点.
(1)求证:;
(2)若二面角的余弦值为,求点到平面的距离.