如图,四棱锥的底面是平行四边形,是的中点,,.
(1)求证:平面;
(2)若,点在侧棱上,且,二面角的大小为,求直线与平面所成角的正弦值.
为研究女高中生身高与体重之间的关系,一调查机构从某中学中随机选取8名女高中生,其身高和体重数据如下表所示:
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高 | 164 | 160 | 158 | 172 | 162 | 164 | 174 | 166 |
体重 | 60 | 46 | 43 | 48 | 48 | 50 | 61 | 52 |
该调查机构绘制出该组数据的散点图后分析发现,女高中生的身高与体重之间有较强的线性相关关系.
(1)调查员甲计算得出该组数据的线性回归方程为,请你据此预报一名身高为的女高中生的体重;
(2)调查员乙仔细观察散点图发现,这8名同学中,编号为1和4的两名同学对应的点与其他同学对应的点偏差太大,于是提出这样的数据应剔除,请你按照这名调查人员的想法重新计算线性回归话中,并据此预报一名身高为的女高中生的体重;
(3)请你分析一下,甲和乙谁的模型得到的预测值更可靠?说明理由.
附:对于一组数据,其回归方程的斜率和截距的最小二乘法估计分别为:.
如图,底面是正三角形的直三棱柱,,是的中点,是的中点.
(1)求证:平面;
(2)求点到平面的距离.
已知抛物线的焦点为,过点的直线与抛物线相交于两点,线段的中点的横坐标为3,.
(1)求抛物线的标准方程;
(2)若直线的倾斜角为钝角,求直线的方程.
已知函数,为自然对数的底数.
(1)求在点处的切线方程;
(2)若切线与轴和轴分别交于两点,点为坐标原点,求的面积.
已知,命题关于的不等式无解;命题方程表示焦点在轴上的椭圆.若为真命题,则实数的取值范围是__________;若为假命题,为真命题,则实数的取值范围是_________________.