满分5 > 高中数学试题 >

某健身馆在2019年7、8两月推出优惠项目吸引了一批客户.为预估2020年7、8...

某健身馆在201978两月推出优惠项目吸引了一批客户.为预估202078两月客户投入的健身消费金额,健身馆随机抽样统计了201978两月100名客户的消费金额,分组如下:(单位:元),得到如图所示的频率分布直方图:

1)请用抽样的数据预估202078两月健身客户人均消费的金额(同一组中的数据用该组区间的中点值作代表);

2)若把201978两月健身消费金额不低于800元的客户,称为健身达人,经数据处理,现在列联表中得到一定的相关数据,请补全空格处的数据,并根据列联表判断是否有的把握认为健身达人与性别有关?

 

健身达人

非健身达人

总计

10

 

 

 

30

 

总计

 

 

 

 

3)为吸引顾客,在健身项目之外,该健身馆特别推出健身配套营养品的销售,现有两种促销方案.

方案一:每满800元可立减100元;

方案二:金额超过800元可抽奖三次,每次中奖的概率为,且每次抽奖互不影响,中奖1次打9折,中奖2次打8折,中奖3次打7.

若某人打算购买1000元的营养品,请从实际付款金额的数学期望的角度分析应该选择哪种优惠方案.

附:

0.150

0.100

0.050

0.010

0.005

2.072

2.706

3.841

6.635

7.879

 

 

(1)620元(2)列联表见解析,有的把握认为“健身达人”与性别有关系,(3)选择方案二更划算 【解析】 (1)利用频率分布直方图计算平均数即可; (2)根据题意补充列表联,由表中数据计算观测值,对照临界值得出结论; (3)分别计算选方案一、方案二所支付的金额,比较它们的大小即可. (1)因为 (元), 所以,预估2020年7、8两月份人均健身消费为620元. (2)列联表如下:   健身达人 非健身达人 总计 男 10 40 50 女 20 30 50 总计 30 70 100 因为, 因此有的把握认为“健身达人”与性别有关系. (3)若选择方案一:则需付款900元; 若选择方案二:设付款元,则可能取值为700,800,900,1000. , , , . 所以(元) 因为,所以选择方案二更划算.
复制答案
考点分析:
相关试题推荐

已知椭圆的两焦点与短轴一端点组成一个正三角形的三个顶点,且焦点到椭圆上的点的最短距离为1.

1)求椭圆的方程;

2)若不过原点的直线与椭圆交于两点,求面积的最大值.

 

查看答案

如图,在直角三棱柱中,分别为的中点.

1)证明:平面平面

2)求二面角的正弦值.

 

查看答案

中,已知边上的一点,.

1)求

2)求的面积.

 

查看答案

表示函数在闭区间上的最大值,若正数满足,则的为__________

 

查看答案

过动点作圆:的切线,其中为切点,若为坐标原点),则的最小值是__________

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.