已知椭圆C的中心在原点O,焦点在x轴上,椭圆的两焦点与椭圆短轴的一个端点构成等边三角形,右焦点到右顶点的距离为1.
(1)求椭圆C的标准方程;
(2)是否存在与椭圆C交于A,B两点的直线l:,使得成立?若存在,求出实数m的取值范围;若不存在,请说明理由.
某工厂因排污比较严重,决定着手整治,一个月时污染度为,整治后前四个月的污染度如下表:
月数 | … | ||||
污染度 | … |
污染度为后,该工厂即停止整治,污染度又开始上升,现用下列三个函数模拟从整治后第一个月开始工厂的污染模式:,,,其中表示月数,、、分别表示污染度.
(1)问选用哪个函数模拟比较合理,并说明理由;
(2)若以比较合理的模拟函数预测,整治后有多少个月的污染度不超过.
已知函数.
(Ⅰ)求的最小正周期;
(Ⅱ)求在区间上的最大值和最小值.
如图,在四棱锥的底面梯形ABCD中,,,,,.又已知平面ABCD,.求:
(1)异面直线PD与AC所成角的大小.(结果用反三角函数值表示)
(2)四棱锥的体积.
如图,正△ABC的中心位于点G(0,1),A(0,2),动点P从A点出发沿△ABC的边界按逆时针方向运动,设旋转的角度(0≤x≤2π),向量在方向的射影为y(O为坐标原点),则y关于x的函数的图象是( )
A.
B.
C.
D.
定义在上的函数既是偶函数又是周期函数,若的最小正周期是,且当时,,则的值为( )
A. B. C. D.