求下列函数的定义域:
(1);
(2);
(3);
(4)(,且).
假设某地初始物价为1,每年以5%的增长率递增,经过年后的物价为.
(1)该地的物价经过几年后会翻一番?
(2)填写下表,并根据表中的数据,说明该地物价的变化规律。
求下列函数的定义域:
(1);
(2)(,且).
已知椭圆C:()的焦距为,且右焦点F与短轴的两个端点组成一个正三角形.若直线l与椭圆C交于、,且在椭圆C上存在点M,使得:(其中O为坐标原点),则称直线l具有性质H.
(1)求椭圆C的方程;
(2)若直线l垂直于x轴,且具有性质H,求直线l的方程;
(3)求证:在椭圆C上不存在三个不同的点P、Q、R,使得直线、、都具有性质H.
已知数列和满足:,,且对一切,均有.
(1)求证:数列为等差数列,并求数列的通项公式;
(2)求数列的前项和;
(3)设,记数列的前项和为,求正整数,使得对任意,均有.
已知函数,其中.
(1)当时,求证:函数是偶函数;
(2)已知,函数的反函数为,若函数在区间上的最小值为,求函数在区间上的最大值.