数列各项均不为0,前n项和为,,的前n项和为,且
(1)若数列共3项,求所有满足要求的数列;
(2)求证:是满足已知条件的一个数列;
(3)请构造出一个满足已知条件的无穷数列,并使得.
如图,曲线由曲线和曲线组成,其中点为曲线所在圆锥曲线的焦点,点为曲线所在圆锥曲线的焦点;
(1)若,求曲线的方程;
(2)对于(1)中的曲线,若过点作直线平行于曲线的渐近线,交曲线于点A、B,求三角形的面积;
(3)如图,若直线(不一定过)平行于曲线的渐近线,交曲线于点A、B,求证:弦AB的中点M必在曲线的另一条渐近线上.
(1) 已知函数是奇函数(为常数),求实数的值;
(2)若,且,求的解析式;
(3)对于(2)中的,若有正数解,求实数的取值范围.
如图,有一块扇形草地OMN,已知半径为R,,现要在其中圈出一块矩形场地ABCD作为儿童乐园使用,其中点A、B在弧MN上,且线段AB平行于线段MN
(1)若点A为弧MN的一个三等分点,求矩形ABCD的面积S;
(2)当A在何处时,矩形ABCD的面积S最大?最大值为多少?
如图,正四棱柱的底面边长为1,异面直线与所成角的大小为,求:
(1)线段到底面的距离;
(2)三棱椎的体积.
对数列,若区间满足下列条件:
①;②,
则称为区间套.下列选项中,可以构成区间套的数列是( )
A.;
B.
C.
D.