已知等差数列的首项,公差,且第2项、第5项、第14项分别是一个等比数列的第2项、第3项、第4项.
(1)求数列的通项公式;
(2)设,,求.
已知圆x2+y2=8内有一点P0(-1,2),AB为过点P0且倾斜角为α的弦.
(1)当α=时,求AB的长;
(2)当弦AB被点P0平分时,写出直线AB的方程(用直线方程的一般式表示).
已知四面体中面,, 垂足为,,为中点,,
(1)求证: 面;
(2)求点到面的距离.
(1)经统计,在某储蓄所一个营业窗口排队等候的人数及相应概率如下:
排队人数 | 0 | 1 | 2 | 3 | 4 | 5人及5人以上 |
概率 |
求至少3人排队等候的概率是多少?
(2)在区间上随机取两个数m,n,求关于x的一元二次方程有实根的概率.
某校学生社团组织活动丰富,学生会为了解同学对社团活动的满意程度,随机选取了100位同学进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[40,50),[50,60),[60,70),…,[90,100]分成6组,制成如图所示频率分布直方图.
(1)求图中x的值;
(2)求这组数据的中位数;
(3)现从被调查的问卷满意度评分值在[60,80)的学生中按分层抽样的方法抽取5人进行座谈了解,再从这5人中随机抽取2人作主题发言,求抽取的2人恰在同一组的概率.
设有两个命题.命题p:不等式的解集是;命题q:函数在定义域内是增函数.如果为假命题,为真命题,求a的取值范围.