如图所示,在三棱锥SABC中,,O为BC的中点.
(1)求证:面ABC;
(2)求异面直线与AB所成角的余弦值;
(3)在线段上是否存在一点,使二面角的平面角的余弦值为;若存在,求的值;若不存在,试说明理由.
已知点A(0,-2),椭圆E: (a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.
(1)求E的方程;
(2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.
乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用局胜制(即先胜局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.
(1)求甲以比获胜的概率;
(2)求乙获胜且比赛局数多于局的概率;
(3)求比赛局数的分布列,并求.
从装有大小相同的2个红球和6个白球的袋子中,每摸出2个球为一次试验,直到摸出的球中有红球(不放回),则实验结束
(1)求第一次实验恰好摸到1个红球和1个白球的概率;
(2)记实验次数为X,求X的分布列及数学期望.
某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有 种.(用数字作答).
的二项展开式中常数项是__________.(用数字作答)