已知定义在实数集上的偶函数和奇函数满足.
(1)求与的解析式;
(2)求证:在区间上单调递增;并求在区间的反函数;
(3)设(其中为常数),若对于恒成立,求的取值范围.
设和是双曲线上的两点,线段的中点为,直线不经过坐标原点.
(1)若直线和直线的斜率都存在且分别为和,求证:;
(2)若双曲线的焦点分别为、,点的坐标为,直线的斜率为,求由四点、、、所围成四边形的面积.
李克强总理在很多重大场合都提出“大众创业,万众创新”.某创客,白手起家,2015年一月初向银行贷款十万元做创业资金,每月获得的利润是该月初投入资金的.每月月底需要交纳房租和所得税共为该月全部金额(包括本金和利润)的,每月的生活费等开支为3000元,余款全部投入创业再经营.如此每月循环继续.
(1)问到2015年年底(按照12个月计算),该创客有余款多少元?(结果保留至整数元)
(2)如果银行贷款的年利率为,问该创客一年(12个月)能否还清银行贷款?
如图,在棱长为1的正方体中,为的中点.
(1)求三棱锥的体积;
(2)求异面直线与所成角的余弦值.
已知为坐标原点,向量,,,.
(1)求证:;
(2)若是等腰三角形,求的值.
下列四个命题中,真命题是( )
A.和两条异面直线都相交的两条直线是异面直线
B.和两条异面直线都相交于不同点的两条直线是异面直线
C.和两条异面直线都垂直的直线是异面直线的公垂线
D.若、是异面直线,、是异面直线,则、是异面直线