已知光线每通过一块玻璃板强度就减弱,要使通过玻璃板的光线的强度不大于原来强度的,则至少需要重叠玻璃板的块数为( )
A.8 B.9 C.10 D.11
某企业生产A,B两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图①;B产品的利润与投资的算术平方根成正比,其关系如图②.(注:利润和投资单位:万元)
(1)分别求出A,B两种产品的利润与投资之间的函数关系式;
(2)已知该企业已筹集到20万元资金,并将其全部投入A,B两种产品的生产,怎样分配这20万元投资,才能使该企业获得最大利润?其最大利润为多少万元?
函数和的图象如图所示,设两函数的图象交于点,且.
(1)请指出图中曲线,分别对应的函数;
(2)结合函数图象,判断的大小.
有1米长的钢材,要做成如图所示的窗框:上半部分为半圆,下半部分为四个全等的小矩形组成的矩形,问小矩形的长与宽之比为多少时,窗户所通过的光线最多?并求出窗户面积的最大值(钢材的宽度忽略不计).
为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式y= (a为常数),如图所示,根据图中提供的信息,回答下列问题:
(1)从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式为__________.
(2)据测定,当空气中每立方米的含药量不高于0.25毫克时,学生方可进教室,那么从药物释放开始,至少需要经过________小时后,学生才能回到教室.
某学校为了实现60万元的生源利润目标,准备制定一个激励招生人员的奖励方案:在生源利润达到5万元时,按生源利润进行奖励,且资金y(单位:万元)随生源利润x(单位:万元)的增加而增加,但资金总数不超过3万元,同时奖金不超过利润的20%.现有三个奖励模型:y=0.2x,y=log5x,y=1.02x,其中哪个模型符合该校的要求?