已知函数.
(Ⅰ)求的极值;
(Ⅱ)若,,,求证:.
已知椭圆的离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线过点且与椭圆相交于两点.过点作直线的垂线,垂足为.证明直线过轴上的定点.
如图,四棱锥中,平面ABCD,底面ABCD是正方形,,E为PC上一点,当F为DC的中点时,EF平行于平面PAD.
(Ⅰ)求证:平面PCB;
(Ⅱ)求二面角的余弦值.
已知数列的前项和为,且满足.
(Ⅰ)求证:数列为等比数列;
(Ⅱ)求数列的前项和.
为响应国家号召,打赢脱贫致富攻坚战,武汉大学团队带领湖北省大悟县新城镇熊湾村村民建立有机、健康、高端、绿色的蔬菜基地,并策划“生产、运输、销售”一体化的直销供应模式,据统计,当地村民两年时间成功脱贫.蔬菜种植基地将采摘的有机蔬菜以每份三斤称重并保鲜分装,以每份10元的价格销售到生鲜超市,每份15元的价格卖给顾客,如果当天前8小时卖不完,则超市通过促销以每份5元的价格卖给顾客(根据经验,当天能够把剩余的有机蔬菜都低价处理完毕,且处理完毕后,当天不再进货).该生鲜超市统计了100天有机蔬菜在每天的前8小时内的销售量(单位:份),制成如下表格(注:,且).若以100天记录的频率作为每日前8小时销售量发生的概率,该生鲜超市当天销售有机蔬菜利润的期望值为决策依据,若购进17份比购进18份的利润的期望值大,则x的最小值是________.
前8小时内销售量 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
频数 | 10 | x | 16 | 16 | 15 | 13 | y |
已知双曲线的左、右焦点分别为、,过点作圆的切线,与双曲线的右支交于点,且。则双曲线的离心率为________________。