已知集合,,则______.
如图,等高的正三棱锥P-ABC与圆锥SO的底面都在平面M上,且圆O过点A,又圆O的直径AD⊥BC,垂足为E,设圆锥SO的底面半径为1,圆锥体积为.
(1)求圆锥的侧面积;
(2)求异面直线AB与SD所成角的大小;
(3)若平行于平面M的一个平面N截得三棱锥与圆锥的截面面积之比为,求三棱锥的侧棱PA与底面ABC所成角的大小.
在棱长为a的正方体ABCD-A1B1C1D1中,E是棱DD1的中点:
(1)求点D到平面A1BE的距离;
(2)在棱上是否存在一点F,使得B1F∥平面A1BE,若存在,指明点F的位置;若不存在,请说明理由.
已知的展开式中,末三项的二项式系数的和等于121;
(1)求n的值;
(2)求展开式中系数最大的项;
(1)设,且,求证:;
(2)求满足的正整数n的最大值;
某小组10名学生参加的一次数学竞赛的成绩分别为:92、77、75、90、63、84、99、60、79、85,求总体平均数μ、中位数m、方差σ2和标准差σ;(列式并计算,结果精确到0.1)