求函数的最小值.
求圆心在极轴上,且过极点与点的圆的极坐标方程.
已知点在矩阵对应的变换作用下得到点.
(1)写出矩阵的逆矩阵;
(2)求的值.
设为正整数,若两个项数都不小于的数列,满足:存在正数,当且时,都有,则称数列,是“接近的”.已知无穷等比数列满足,无穷数列的前项和为,,且,.
(1)求数列通项公式;
(2)求证:对任意正整数,数列,是“接近的”;
(3)给定正整数,数列,(其中)是“接近的”,求的最小值,并求出此时的(均用表示).(参考数据:)
已知函数.
(1)若曲线在处的切线的斜率为2,求函数的单调区间;
(2)若函数在区间上有零点,求实数的取值范围.(是自然对数的底数,)
请你设计一个包装盒,是边长为的正方形硬纸片(如图1所示),切去阴影部分所示的四个全等的等腰三角形,再沿虚线折起,使得,,,四个点重合于图2中的点,正好形成一个正四棱锥形状的包装盒(如图2所示),设正四棱锥的底面边长为.
(1)若要求包装盒侧面积不小于,求的取值范围;
(2)若要求包装盒容积最大,试问应取何值?并求出此时包装盒的容积.