(1)证明见解析.
(2) 证明见解析.
(3) 证明见解析.
【解析】
试题(1)根据条件,利用平面和平面垂直的性质定理可得PA⊥平面ABCD.
(2)根据已知条件判断ABED为平行四边形,故有BE∥AD,再利用直线和平面平行的判定定理证得BE∥平面PAD.
(3)先证明ABED为矩形,可得BE⊥CD ①.现证CD⊥平面PAD,可得CD⊥PD,再由三角形中位线的性质可得EF∥PD,
从而证得 CD⊥EF ②.结合①②利用直线和平面垂直的判定定理证得CD⊥平面BEF,再由平面和平面垂直的判定定理
证得平面BEF⊥平面PCD.
【解析】
(1)∵PA⊥AD,平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,由平面和平面垂直的性质定理可得PA⊥平面ABCD.
(2)∵AB∥CD,AB⊥AD,CD=2AB,E和F分别是CD和PC的中点,故四边形ABED为平行四边形,故有BE∥AD.
又AD⊂平面PAD,BE不在平面PAD内,故有BE∥平面PAD.
(3)平行四边形ABED中,由AB⊥AD可得,ABED为矩形,故有BE⊥CD ①.
由PA⊥平面ABCD,可得PA⊥AB,再由AB⊥AD可得AB⊥平面PAD,
∴CD⊥平面PAD,故有CD⊥PD.
再由E、F分别为CD和PC的中点,可得EF∥PD,
∴CD⊥EF ②.
而EF和BE是平面BEF内的两条相交直线,故有CD⊥平面BEF.
由于CD⊂平面PCD,∴平面BEF⊥平面PCD.