设函数f(x)=丨x+a+1丨+丨x-丨,(a>0).
(1)证明:f(x)≥5;
(2)若f(1)<6成立,求实数a的取值范围.
在平面直角坐标系中,倾斜角为的直线的参数方程为(为参数).以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是.
(Ⅰ)写出直线的普通方程和曲线的直角坐标方程;
(Ⅱ)若直线经过曲线的焦点且与曲线相交于两点,设线段的中点为,求的值.
已知函数,.
(Ⅰ)讨论的单调性;
(Ⅱ)当时,令,其导函数为,设是函数的两个零点,判断是否为的零点?并说明理由.
已知椭圆()的离心率为,短轴长为.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若直线与椭圆交于不同的两点,且线段的垂直平分线过定点,求实数的取值范围.
为响应绿色出行,某市在推出“共享单车”后,又推出“新能源分时租赁汽车”.其中一款新能源分时租赁汽车,每次租车收费的标准由两部分组成:①根据行驶里程数按1元/公里计费;②行驶时间不超过分时,按元/分计费;超过分时,超出部分按元/分计费.已知王先生家离上班地点公里,每天租用该款汽车上、下班各一次.由于堵车、红绿灯等因素,每次路上开车花费的时间 (分)是一个随机变量.现统计了次路上开车花费时间,在各时间段内的频数分布情况如下表所示:
时间(分) | ||||
频数 |
将各时间段发生的频率视为概率,每次路上开车花费的时间视为用车时间,范围为分.(1)写出王先生一次租车费用(元)与用车时间(分)的函数关系式;(2)若王先生一次开车时间不超过分为“路段畅通”,设表示3次租用新能源分时租赁汽车中“路段畅通”的次数,求的分布列和期望.
如图,在三棱锥P-ABC中,平面PAC⊥平面ABC,和都是正三角形, , E、F分别是AC、BC的中点,且PD⊥AB于D.
(Ⅰ)证明:直线⊥平面;
(Ⅱ)求二面角的正弦值.