已知数列与满足,.
(1)若,求数列的通项公式;
(2)若,且数列是公比等于2的等比数列,求的值,使数列也是等比数列;
(3)若,且,数列有最大值与最小值,求的取值范围.
某公司要在一条笔直的道路边安装路灯,要求灯柱AB与底面垂直,灯杆BC与灯柱AB所在的平面与道路走向垂直,路灯C采用锥形灯罩,射出的管线与平面ABC部分截面如图中阴影所示,路宽AD=24米,设
(1)求灯柱AB的高h(用表示);
(2)此公司应该如何设置的值才能使制作路灯灯柱AB和灯杆BC所用材料的总长度最小?最小值为多少?
已知函数.
(1)根据的不同取值,讨论函数的奇偶性,并说明理由;
(2)若不等式在上恒成立,求实数的取值范围.
如图,在棱长为的正方体中,点是棱的中点,点是棱的中点.
(1)求证:;
(2)求二面角的大小(结果用反三角函数值表示).
函数的图像如图所示,在区间上可找到个不同的数,使得,则的取值范围为( )
A. B.
C. D.
设在中,角所对的边分别为, 若, 则的形状为 ( )
A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定