满分5 > 高中数学试题 >

设是半径为的球面上的四个不同点,且满足,,,用分别表示△、△、△的面积,则的最大...

是半径为的球面上的四个不同点,且满足,,,用分别表示△的面积,则的最大值是___________

 

2 【解析】 由题意可知,三棱锥的顶点的三条直线两两垂直,可以扩展为长方体,对角线为球的直径,设出三边长度,表示出面积关系式,然后利用基本不等式,求出最大值. 【解析】 设, 因为两两互相垂直, 扩展为长方体,它的对角线为球的直径,所以, , 即最大值为:2. 故答案为:2.
复制答案
考点分析:
相关试题推荐

已知关于的一元二次方程()有实数根,则的最小值为___________

 

查看答案

已知球的半径为25,有两个平行平面截球所得的截面面积分别是49400,则这两个平行平面间的距离为___________

 

查看答案

若复数x满足,则__________.

 

查看答案

若一个圆锥的侧面展开图是面积为的半圆面,则该圆锥的高为______

 

查看答案

一个高为1的正三棱锥的底面正三角形的边长为6,则此三棱锥的侧面积为______

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.