对于双曲线:(),若点满足,则称在的外部;若点满足,则称在的内部.
(1)证明:直线上的点都在的外部.
(2)若点的坐标为,点在的内部或上,求的最小值.
(3)若过点,圆()在内部及上的点构成的圆弧长等于该圆周长的一半,求、满足的关系式及的取值范围.
已知函数,其中.
(1)证明:函数在上为增函数.
(2)证明:不存在负实数使得.
已知函数,其中、为非零实常数.
(1)若,的最大值为,求、的值.
(2)若,是图像的一条对称轴,求的值,使其满足,且.
如图,小凳凳面为圆形,凳脚为三根细钢管.考虑到钢管的受力等因素,设计的小凳应满足:三根细钢管相交处的节点与凳面圆形的圆心的连线垂直于凳面和地面,且分细钢管上下两段的比值为,三只凳脚与地面所成的角均为.若、、是凳面圆周的三等分点,厘米,求凳子的高度及三根细钢管的总长度(精确到).
已知全集,集合,若中的点在直角坐标平面内形成的图形关于原点、坐标轴、直线均对称,且,则中的元素个数至少有( )
A.个 B.个 C.个 D.个
若△的三条边,,满足,则△( )
A.一定是锐角三角形
B.一定是直角三角形
C.一定是钝角三角形
D.可能是锐角三角形,也可能是钝角三角形